
BEK: Re-Envisioning In-Browser Privacy

Pieter Hooimeijer University of Virginia
Benjamin Livshits Microsoft Research

David Molnar Microsoft Research
Prateek Saxena University of California Berkeley
Margus Veanes Microsoft Research

Microsoft Research Technical Report
MSR-TR-2010-154

1

Abstract
Web applications must use special string-manipulating sanitization
functions on untrusted user data, but writing these functions correctly
is error prone and time consuming. We present a domain-specific im-
perative language, BEK, that is expressive enough to capture real web
sanitizers used in the Internet Explorer XSS Filter and the Google Au-
toEscape framework. We exhibit a translation from the BEK language
to symbolic finite state transducers (SFTs), a novel representation for
transducers that annotates transitions with logical formulae. Symbolic
finite state transducers give us a new way to marry the classic theory
of finite state transducers with the recent progress in satisfiability mod-
ulo theories (SMT) solvers. We exhibit algorithms for checking equiv-
alence of images of regular languages, idempotency, commutativity,
and other properties of SFTs that scale quadratically in the number of
states, and we show that BEK’s implementation of these algorithms
scales near-linearly in practice. We then show how BEK can be ap-
plied to checking key security properties of web sanitizers, and how
programs written in the BEK language can be compiled to traditional
languages such as JavaScript. BEK makes it possible for web devel-
opers to write sanitizers supported by deep analysis, yet deploy the
analyzed code directly to real applications.

BEK: Modeling Imperative String Operations with
Symbolic Transducers

Pieter Hooimeijer
University of Virginia

Benjamin Livshits
Microsoft Research

David Molnar
Microsoft Research

Prateek Saxena
UC Berkeley

Margus Veanes
Microsoft Research

Abstract
Web applications must use special string-manipulating sanitization
functions on untrusted user data, but writing these functions cor-
rectly is error prone and time consuming. We present a domain-
specific imperative language, BEK, that is expressive enough to
capture real web sanitizers used in the Internet Explorer XSS Filter
and the Google AutoEscape framework. We exhibit a translation
from the BEK language to symbolic finite state transducers (SFTs),
a novel representation for transducers that annotates transitions
with logical formulae. Symbolic finite state transducers give us a
new way to marry the classic theory of finite state transducers with
the recent progress in satisfiability modulo theories (SMT) solvers.
We exhibit algorithms for checking equivalence of images of regu-
lar languages, idempotency, commutativity, and other properties of
SFTs that scale quadratically in the number of states, and we show
that BEK’s implementation of these algorithms scales near-linearly
in practice. We then show how BEK can be applied to checking key
security properties of web sanitizers, and how programs written in
the BEK language can be compiled to traditional languages such
as JavaScript. BEK makes it possible for web developers to write
sanitizers supported by deep analysis, yet deploy the analyzed code
directly to real applications.

1. Introduction
Cross site scripting (“XSS”) attacks are a plague in today’s web
applications. These attacks happen because the applications take
data from untrusted users of the application, then echo this data to
other users of the application. Because web pages mix markup and
JavaScript, this data may be interpreted as code by a browser, lead-
ing to arbitrary code execution with the privileges of the victim.
The first line of defense is the practice of sanitization, where un-
trusted data is passed through a sanitizer, a function that escapes or
removes potentially dangerous strings.

Unfortunately, writing sanitizers is difficult to do correctly. Re-
cent static analyses of web applications address cross-site script-
ing or SQL injection by explicitly modeling sets of values that
strings can take at runtime [9, 18, 26, 27]. These approaches use
analysis-specific models of strings that are based on finite automata
or context-free grammars. More recently, there has been significant
interest in constraint solving tools that model strings [8, 14, 15, 17,
20, 24, 25]. String constraint solvers allow any client analysis to ex-
press constraints (e.g., path predicates) that include common string
manipulation functions. The key problem with existing solutions
is that they sacrifice precision to work with sanitizer implementa-
tions that are in general purpose languages, such as PHP or Java.
No guarantees can be given about the results.

Sanitizers, however, are typically a small amount of code, per-
haps tens of lines. Furthermore, security-critical string functions
can be modeled precisely using finite state transducers over a
symbolic alphabet. Therefore, sanitizers are a prime target for a
domain-specific language.

We introduce BEK, a language for modeling string transforma-
tions. The language is designed to be (a) sufficiently expressive to
model real-world code, and (b) sufficiently restricted to allow pre-
cise analysis using transducers. BEK can model real-world sanitiza-
tion functions, such as those in the .NET System.Web library, with-
out approximation. We provide a translation from BEK expressions
to the theory of algebraic datatypes, allowing BEK expressions to
be used directly when specifying constraints for an SMT solver, in
combination with other theories.

Key to enabling the analysis of BEK programs is a new theory
of symbolic finite state transducers, an extension of standard form
finite transducers that we introduce formally in this paper. We in-
troduce the notion of and develop a theory of symbolic transducers,
showing its integration with other theories in SMT solvers that sup-
port E-matching [10]. We give algorithms for join composition and
equivalence checking that show these problems are decidable.

We then show that multiple real world Web sanitization func-
tions, including those used in Internet Explorer 8’s cross-site script-
ing filter and Google’s AutoEscape framework, can be converted to
BEK programs. We report on which features of the BEK language
are needed and which features could be added given our experience.
We then use BEK to perform security specific analyses of web san-
itizers. For example, we use BEK to determine whether there ex-
ists an input to a sanitizer that yields any member of a publicly
available database of strings known to result in cross site scripting
attacks. Finally, we exhbit a compilation from BEK to JavaScript,
which allows developers to use BEK for developing sanitizers that
can be transferred rapidly to real applications.

1.1 Contributions
The primary contributions of this paper are:

• We formally describe a domain-specific language, BEK, for
string manipulation. We describe a syntax-driven translation
from BEK expressions to symbolic finite state transducers.
• We develop a theory of symbolic finite-state transducers (SFTs)

and provide algorithms for performing composition computa-
tion and equivalence checking. We argue that a symbolic repre-
sentation is needed to maintain the scalability of the approach
since the non-symbolic representation explodes in the case of a
large underlying alphabet such as the Unicode or even ASCII.
We provide non-trivial extensions of classical decidability re-
sults to symbolic case modulo any background theory.
• We show that BEK can encode real-world string manipulating

code used to sanitize untrusted inputs in Web applications. We
demonstrate several applications that are of direct practical in-
terest. These include checking equivalence of different imple-
mentations of the same sanitizer, checking commutativity of
sanitizers, and checking whether sanitizers have inputs result-
ing in known attack vectors.

Bek compiler

Bek program
representation

Bek front end C# converter Java converter

C#
back end

C
back end

JavaScript
back end

Query Optimizations Instance

Figure 1: BEK architecture

1 private static string EncodeHtml(string strInput)
2 {
3 if (strInput == null) { return null; }
4 if (strInput.Length == 0) { return string.Empty; }
5 StringBuilder builder =
6 new StringBuilder ("", strInput.Length * 2);
7 foreach (char ch in strInput)
8 {
9 if ((((ch > ’‘’) && (ch < ’{’)) ||

10 ((ch > ’@’) && (ch < ’[’))) || (((ch == ’ ’) ||
11 ((ch > ’/’) && (ch < ’:’))) || (((ch == ’.’) ||
12 (ch == ’,’)) || ((ch == ’-’) || (ch == ’_ ’))))){
13 builder.Append(ch);
14 } else {
15 builder.Append ("&#" +
16 ((int) ch). ToString () + ";");
17 }
18 }
19 return builder.ToString ();
20 }

Figure 2: Code for AntiXSS.EncodeHtml from version 2.0.

1.2 Paper Organization
The rest of this paper is structured as follows. In Section 2 we pro-
vide a motivating example and describe the basics of our approach.
Section 3 provides language-theoretic definitions and presents the
translation from BEK expressions to transducers. Section 4 de-
scribes the core transducer-based algorithms. Section 5 talks about
the kinds of analyses we can do on BEK programs and our experi-
mental results. Finally, we discuss closely related work in Section 6
and conclude in Section 7.

2. Overview
This section starts by providing a motivating example for the BEK
language (Section 2.1), discusses some of the applications of BEK
to analyzing security sanitization functions (Section 2.2), and then
describes the overall architecture of the BEK system (Section 2.3).

2.1 Introductory Example
We now show examples of web sanitization functions. Typically
this code performs character escaping, where a character is com-
pared against a list of prohibited characters and then transformed
into an escaped format if it matches.

Example 1. The example code in Figure 2 is from the public
Microsoft AntiXSS library. The sanitizer iterates over the input
character-by-character. Depending on the character encountered, a
different action is taken, such as including the character verbatim
or encoding it in some manner, such as numeric HTML escaping.
�

Example 2. The following BEK program is a basic sanitizer that
escapes single and double quotes (but only if they are not escaped
already). Note that the structure of the BEK code below closely
matches the character-by-character iteration structure of the Anti-

XSS example above. The iter block uses a character variable c and
a single boolean state variable b that is initially f or false.

iter(c in t) {b := f ; } {
case(¬(b) ∧ (c = ‘’’ ∨ c = ‘"’)) {

b := f ; yield(‘\’); yield(c); }
case(c = ‘\’) {

b := ¬(b); yield(c); }
case(t) {

b := f ; yield(c); }
}

The boolean variable b is used to track whether the previous charac-
ter seen was an unescaped slash. For example, in the input \\" the
double quote is not considered escaped, and the transformed output
is \\\". If we apply the BEK program to \\\" again, the output is
the same. An interesting question is whether this holds for any out-
put string. In other words, we may be interested in whether a given
BEK program is idempotent.

If implemented incorrectly, double applications of such saniti-
zation functions will result in duplicate escaping. This in turn has
led to command injection of script-injection attacks in the past.
Therefore, checking idempotence of certain functions is practically
useful. We will see in the next section how BEK can perform such
checks. �

2.2 Applications of BEK to Security
Web sanitizers are the first line of defense against cross-site script-
ing attacks for web applications: they are functions applied to un-
trusted data provided by a user that attempt to make the data “safe”
for rendering in a web browser. Reasoning about the security prop-
erties of web sanitizers is crucial to the security of web applications
and browsers. Formal verification of sanitizers is therefore crucial
in proving the absence of injection attacks such as cross-site and
cross-channel scripting as well as information leaks.

2.2.1 Security of Sanitizer Composition
Recent work has demonstrated that developers may accidentally
compose sanitizers in ways that are not safe [22]. BEK can check
two key properties of sanitizer composition: commutativity and
idempotence.
Commutativity: Consider JavaScriptCodec and
HTMLEntityCodec [4]. The former performs Unicode en-
coding (\u00XX) for safely embedding untrusted data in JavaScript
strings while the latter sanitizer performs HTML entity-encoding
(<) for embedded untrusted data in HTML content. It turns out
that if JavaScriptCodec is applied to untrusted data before the
application of HTMLEntityCodec, certain XSS attacks are not
prevented. The opposite ordering does prevent these attacks. BEK
can check if a pair of sanitizers are commutative, which would
mean the programmer does not need to worry about this class of
bugs.
Idempotence: BEK can check if applying the sanitizer twice yields
different behavior from a single application. For example, an extra
JavaScript string encoding may break the intended rendering be-
havior in the browser.

2.2.2 Sanitizer Implementation Correctness
Hand-coded sanitizers are notoriously difficult to write correctly.
Analyses provided by BEK help achieve correctness in three ways.
Comparing multiple sanitizer implementations: Multiple imple-
mentations of the same sanitization functionality can differ in sub-
tle ways [7]. BEK can check whether two different programs writ-
ten in the BEK language are equivalent. If they are not, BEK ex-
hibits inputs that yield different behaviors.
Comparing sanitizers to browser filters: Internet Explorer 8
and 9, Google Chrome, Safari, and Firefox employ built-in XSS
filters (or have extensions [3]) that observe HTTP requests and re-
sponses [1, 2] for attacks. These filters are most commonly spec-
ified as regular expressions, which we can model with BEK. We

Bool ConstantsB ∈ {t, f}
Char Constants d ∈ Σ

Bool Variables b, . . .
Char Variables c
String Variables t

Strings sexpr ::= iter(c in sexpr) {init} {case∗}
| fromLast(ccond, sexpr)
| uptoLast(ccond, sexpr) | t

init ::= (b := B)∗

case ::= case(bexpr) {cstmt}| endcase
endcase ::= end(ebexpr){yield(d)∗}

cstmt ::= (b := ebexpr; | yield(cexpr);)∗

Booleans bexpr ::= Boolcomb(bexpr) |B | b | ccond
ebexpr ::= Boolcomb(ebexpr) |B | b
ccond ::= Boolcomb(ccond) |cexpr = cexpr

| cexpr < cexpr | cexpr > cexpr
Characters cexpr ::= c | d

Figure 3: Concrete syntax for BEK. Well-formed BEK expressions are functions
of type string -> string; the language provides basic constructs to filter and
transform the single input string t. Boolcomb(e) stands for Boolean combination
of e using conjunction, disjunction, or negation.

can then check for inputs that are disallowed by browser filters, but
which are allowed by sanitizers. For example, BEK can automati-
cally determine that the sanitizer in Figure 2 does not block attacks
such as javascript: which are prevented by IE 8 XSS filters.
These inputs are likely problematic.
Checking against public attack sets: Several public XSS attack
sets are available, such as XSS cheat sheet [5]. With BEK, for all
sanitizers, for all attack vectors in an attack set, we can check if
there exists an input to the sanitizer that yields the attack vector.

2.3 System Architecture
Figure 1 shows an architectural diagram for the BEK system. At
the center of the picture is the transducer-based representation of a
BEK program. At the moment, we support a BEK language front
end, although other front ends that convert Java or C# programs
into BEK are also possible.

3. BEK Language and Transducers
In this section, we give a high-level description of a small imper-
ative language, BEK, of low-level string operations. Our goal is
two-fold. First, it should be possible to model BEK expressions in a
way that allows for their analysis using existing constraint solvers.
Second, we want BEK to be sufficiently expressive to closely model
real-world code (such as Example 2). In this section we first present
the BEK language. We then define the semantics of BEK programs
in terms of symbolic finite transducers (SFTs), that are symbolic
extensions of classical finite transducers. Finally, we describe sev-
eral core decision procedures for SFTs that provide an algorithmic
foundation for efficient static analysis and verification of BEK pro-
grams.

3.1 BEK Language
Figure 3 describes the language syntax. We define a single string
variable, t, to represent an input string, and a number of expres-
sions that can take either t or another expression as their input. The
uptoLast(ϕ, t) and fromLast(ϕ, t) are built-in search opera-
tions that extract the prefix (suffix) of t upto (from) and excluding
the last occurrence of a character satisfying ϕ. These built-in opera-
tions are not expressible in the core language, because they require
the underlying transducer to be non-deterministic, while the trans-
lation from the core language always yields deterministic transduc-
ers.

Example 3. uptoLast(c = ‘.’, "w.abc.org") = "www.abc",
fromLast(c = ‘.’, "w.abc.org") ="org". �

The iter construct is designed to model loops that traverse
strings while making imperative updates to Boolean variables.
Given a string expression (sexpr), a character variable c, and an
initial boolean state (init), the statement iterates over characters c
in sexpr and evaluaates the conditions of the case statements in

order. When a condition evaluates to true, the statements in cstmt
may yield zero or more characters to the output and update the
Boolean variables for future iterations and the iteration continues.
The endcase applies when the end of the input string has been
reached. When no case applies, this correspond to yielding zero
characters and the iteration continues or the loop terminates if the
end of the input has been reached.

3.2 Finite Transducers
We start with the classical definition of finite transducers. The
particular sublass of finite transducers that we are considering here
are also called generalized sequential machines or GSMs [19],
however, this definition is not standardized in the literature, and we
therefore continue to say finite transducers for this restricted case.
The restriction is that, GSMs read one symbol at each transition,
while a more general definition allows transitions that skip inputs.

Definition 1. A Finite Transducer A is defined as a six-tuple
(Q, q0, F,Σ,Γ,∆), where Q is a finite set of states, q0 ∈ Q is
the initial state, F ⊆ Q is the set of final states, Σ is the input
alphabet, Γ is the output alphabet, and ∆ is the transition function
from Q× Σ to 2Q×Γ∗ .

We indicate a component of a finite transducerA by usingA as a

subscript. For (q, v) ∈ ∆A(p, a) we define the notation p
a/v−→A q,

where p, q ∈ QA, a ∈ ΣA and v ∈ Γ∗A. We write p
a/v−→ q when A

is clear from the context. Given words v and w we let v · w denote
the concatenation of v and w. Note that v · ε = ε · v = v.

Given qi
ai/vi−→A qi+1 for i < n we write q0

u/v−→A qn where
u = a0 · a1 · . . . · an−1 and v = v0 · v1 · . . . · vn−1. We write also

q
ε/ε−→A q. A induces the finite transduction, TA : Σ∗A → 2Γ∗A :

TA(u)
def
= {v | ∃q ∈ FA (q0

A
u/v−→ q)}

We lift the definition to sets, TA(U)
def
=

⋃
u∈U T (u). Given two fi-

nite transductions T1 and T2, T1◦T2 denotes the finite transduction
that maps an input word u to the set T2(T1(u)). In the following
let A and B be finite transducers. A fundamental composition of A
and B is the join composition of A and B.

Definition 2. The join of A and B is the finite transducer

A ◦B def
= (QA ×QB , (q0

A, q
0
B), FA × FB ,ΣA,ΓB ,∆A◦B)

where, for all (p, q) ∈ QA ×QB and a ∈ ΣA:

∆A◦B((p, q), a)
def
= {((p′, q), ε) | p a/ε−→A p

′}

∪ {((p′, q′), v) | (∃u ∈ Γ+
A)

p
a/u−→A p

′, q
u/v−→B q′}

The following property is well-known and allows us to drop the
distinction between A and TA without causing ambiguity.

Proposition 1. TA◦B = TA ◦ TB .

The following classification of finite transducers plays a central
role in the sections discussing translation from BEK and decision
procedures for symbolic finite transducers.

Definition 3. A is single-valued if for all u ∈ Σ∗A, |A(u)| ≤ 1.

3.3 Symbolic Finite Transducers
Symbolic finite transducers, as defined below, provide a symbolic
representation of finite transducers using terms modulo a given
background theory T . The background universe V of values is
assumed to be multi-sorted, where each sort σ corresponds to a
sub-universe Vσ . The Boolean sort is BOOL and contains the truth
values t (true) and f (false). Definition of terms and formulas
(Boolean terms) is standard inductive definition, using the function
symbols and predicate symbols of T , logical connectives, as well as
uninterpreted constants with given sorts. All terms are assumed to
be well-sorted. A term t of sort σ is indicated by t : σ. Given a term
t and a substitution θ from variables (or uninterpreted constants)

to terms or values, Subst(t, θ) denotes the term resulting from
applying the substitution θ to t.

A model is a mapping of uninterpreted constants to values.1 A
model for a term t is a model that provides an interpretation for
all uninterpreted constants that occur in t. (All free variables are
treated as uninterpreted constants.) The interpretation or value of
a term t in a model M for t is given by standard Tarski semantics
using induction over the structure of terms, and is denoted by tM .
A formula (predicate) ϕ is true in a model M for ϕ, denoted by
M |= ϕ, if ϕM evaluates to true. A formula ϕ is satisfiable,
denoted by IsSat(ϕ), if there exists a model M such that M |= ϕ.
Any term t:σ that includes no uninterpreted constants is called a
value term and denotes a concrete value [[t]] ∈ Vσ .

Let Termγ
T (x̄) denote the set of all terms in T of sort γ,

where x̄ = x0, . . . , xn−1 may occur as the only uninterpreted
constants (variables). Let PredT (x̄) denote TermBOOL

T (x̄). In order
to avoid ambiguities in notation, given a setE of elements, we write
[e0, . . . , en−1] for elements of E∗, i.e., sequences of elements
from E. We use both [] and ε to denote the empty sequence.
As above, if e1, e2 ∈ E∗, then e1 · e2 ∈ E∗ denotes the
concatenation of e1 with e2. We lift the interpretation of terms
to apply to sequences: for u = [u0, . . . , un−1] ∈ Termγ

T (x̄)∗ let
uM

def
= [uM0 , . . . , uMn−1] ∈ (Vγ)∗.

In the following let c:σ be a fixed uninterpreted constant of sort
σ. We refer to c:σ as the input variable (for the given sort σ).

Definition 4. A Symbolic Finite Transducer (SFT) for T is a six-
tuple (Q, q0, F, σ, γ, δ), where Q is a finite set of states, q0 ∈ Q is
the initial state, F ⊆ Q is the set of final states, σ is the input sort,
γ is the output sort, and δ is the symbolic transition function from
Q× PredT (c) to 2Q×Term

γ
T (c)∗ .

We use the notation p
ϕ/u−→A q for (q,u) ∈ δA(p, ϕ) and call

p
ϕ/u−→A q a symbolic transition, ϕ/u is called its label, ϕ is called

its input (guard) and u its output.
An SFT A = (Q, q0, F, σ, γ, δ) denotes the finite transducer

[[A]] = (Q, q0, F,Vσ,Vγ ,∆) where p
a/v−→[[A]] q if and only if

there exists p
ϕ/u−→A q and a model M such that M |= ϕ, cM = a,

uM = v.
For an STF A let the underlying transduction TA be T[[A]]. For

a state q ∈ QA let T qA(v) (T q[[A]](v)) denote the set of outputs when
starting from q with input v. In particular, if q = q0

A then TC = T qA
and T[[A]] = T q[[A]]. The following proposition follows directly from
the definition of [[A]].

Proposition 2. For v ∈ Σ∗[[A]] and q ∈ QA: T qA(v) = T q[[A]](v).

Example 4. The identity SFT Id (for sort σ) is defined follows.

Id = ({q}, q, {q}, σ, σ, {q t/[c]−→ q}). Thus, for all a ∈ Vσ ,

q
a/a−→[[Id]] q, and [[Id]](v) = {v} for all v ∈ (Vσ)∗. �

Example 5. Assume σ is the sort for characters. The predicate c =
‘.’ says that the input character is a dot. The SFT UptoLastDot
such that for all strings v,

UptoLastDot(v) = uptoLast(c = ‘.’, v),

where uptoLast is the BEK function introduced above, is shown
in Figure 4. �

 0

!(c=’.’)/[c]

1
(c=’.’)/[]

2

(c=’.’)/[c]

!(c=’.’)/[]

(c=’.’)/[]t/[c]

Figure 4: SFT UptoLastDot for uptoLast(c=‘.’,input).
1 The interpretations of background functions of T is fixed and is assumed
to be an implicit part of all models.

The algorithm for join composition of SFTs, A ◦B, is deferred
to Section 4.1. At this point we note that the algorithm works
directly with SFTs, and keeps the resulting SFT clean in the sense
that all symbolic transitions are feasible, and eliminates states that
are unreachable from the initial state as well as non-initial states
that are not backwards reachable from any final state. In order to
preserve feasibility of transitions the algorithm uses a solver for
checking satisfiability of formulas in PredT (c).

3.4 BEK to SFT translation
The basic sort needed in this section, besides BOOL, is a sort
CHAR for characters. We also assume the background relation
< : CHAR × CHAR → BOOL as a strict total order correspond-
ing to the standard lexicographic order over ASCII (or Unicode)
characters and assume >, ≤ and ≥ to be defined accordingly. We
also assume that each individual character has a built-in constant
such as ‘a’:CHAR. For example,

(‘A’ ≤ c ∧ c ≤ ‘Z’) ∨ (‘a’ ≤ c ∧ c ≤ ‘z’)∨
(‘0’ ≤ c ∧ c ≤ ‘9’) ∨ c = ‘ ’

descibes the regex character class \w of all word characters in
ASCII. (Direct use of regex character classes in BEK, such as
case(\w) {. . .}, is supported in the enhanced syntax supported in
the BEK analyzer tool.)

Each sexpr e is translated into an SFT SFT (e). For the string
variable t, SFT (e) = Id , with Id as in Example 4.

The translation of uptoLast(ϕ, e) is the symbolic composi-
tion STF (e) ◦ B where B is an SFT similar to the one in Exam-
ple 5, except that the condition c = ‘.’ is replaced by ϕ. The
translation of fromLast(ϕ, e) is analogous.

Finally, SFT (iter(c in e) {init} {case∗}) = SFT (e) ◦ B
where B = (Q, q0, Q, CHAR, CHAR, δ) is constructed as follows.

Normalize. Transform case∗ so that case conditions are mutually
exclusive by adding the negations of previous case conditions
as conjuncts to all the subsequent case conditions, and ensure
that each Boolean variable has exactly one assignment in each
cstmt (add the trivial assignment b := b if b is not assigned).

Compute states. Compute the set of states Q. Let q0 be an initial
state as the truth assignment to Boolean variables declared in
init.2 Compute the set Q of all reachable states, by using
DFS, such that, given a reached state q, if there exists a case
case(ϕ) {cstmt} such that Subst(ϕ, q) is satisfiable then add
the state

{b 7→ [[Subst(ψ, q)]] | b := ψ ∈ cstmt} (1)

to Q. (Note that Subst(ψ, q) is a value term.)

Compute transitions. Compute the symbolic transition function
δ. For each state q ∈ Q and for each case case(ϕ) {cstmt}
such that φ = Subst(ϕ, q) is satisfiable. Let p be the state com-
puted in (1). Let yield(u0), . . . ,yield(un−1) be the sequence
of yields in cstmt and let u = [u0, . . . , un−1]. Add the sym-

bolic transition q
φ/u−→ p to δ.

The translation of end-cases is similar, resulting in symbolic tran-
sitions with guard c = ⊥, where ⊥ is a special character used
to indicate end-of-string. We assume ⊥ to be least with respect
to <. For example, assuming that the BEK programs use concrete
ASCII characters, ⊥:CHAR is either an additional character, or the
null character ‘\0’ if only null-terminated strings are considered
as valid input strings. Although practically important, end-cases do
not cause algorithmic complications, and for the sake of clarity we
avoid them in further discussion.

The algorithm uses a solver to check satisfiability of guard for-
mulas. If checking satisfiability of a formula for example times out,
then it is safe to assume satisfiability and to include the correspond-
ing symbolic transition. This will potentially add infeasible guards
but retains the correctness of the resulting SFT, meaning that the

2 Note that q0 is the empty assignment if init is empty, which trivializes
this step.

underlying finite transduction is unchanged. While in most cases
checking satisfiability of guards seems “easy”, as they are typically
small, when considering Unicode, this perception is deceptive. As
a simple example, the regex character class [\W-[\D]] denotes an
empty set since \d is a subset of \w and \W (\D) is the complement
of \w (\d), and thus, [\W-[\D]] is the intersection of \W and \d. Just
the character class \w alone contains 323 non-overlapping ranges in
Unicode, totaling 47,057 characters. A naive algorithm for check-
ing satisfiability (non-emptiness) of [\W-[\D]] may easily time out.

 0

((c=’’’)|(c=’"’))/[’\’,c]
(!((c=’’’)|(c=’"’))&!(c=’\’))/[c]

1(c=’\’)/[c]
t/[c]

Figure 5: SFT for BEK program in Example 2.

Consider the
BEK program in
Example 2. The
corresponding SFT
constructed by the
above translation
is shown in Fig-
ure 5. There are two
symbolic transitions
from state {b 7→ f}
to itself, corresponding to the cases where the input character c
needs (does not need) to be escaped.

4. Core Algorithms for SFTs
In this section we present two general algorithms for SFTs. First,
we describe the symbolic join composition algorithm that is used
above in the BEK translation algorithm. Second, we describe an
equivalence checking algorithm for single-valued SFTs, where an
SFTA is single-valued if [[A]] is single-valued (recall Definition 3).
The equivalence checking algorithm and the implied decidabil-
ity result is a nontrivial generalization of the corresponding result
known for single-valued finite transducers ,while the general equiv-
alence checking problem for finite transducers and GSMs, and thus
for general SFTs (with any background T), is undecidable [16].

In the algorithms we use the definitions Src(p
ϕ/u−→ q)

def
= p,

Tgt(p
ϕ/u−→ q)

def
= q, Grd(p

ϕ/u−→ q)
def
= ϕ, and Out(p

ϕ/u−→ q)
def
= u.

Also, we write δA(q) for the set of all symbolic transitions of A
from state q.

4.1 Join Composition
Let A and B be given SFTs and assume that ρ = γA = σB .
The join composition algorithm constructs an SFT A ◦B such that
T[[A◦B]] = T[[A]] ◦ T[[B]].

The algorithm is shown in Figure 6, where Subst(e, u) stands
for Subst(e, {c 7→ u}), i.e., the result of substituting the input
variable c:ρ in e by the term u:ρ. The algorithm uses a procedure
GetPaths(ϕ,u, q, B) that, given a symbolic label ϕ/u of A, and
a state q of B, returns the collection of all joined paths in B of
length Len(u) that start from p and whose guards are feasible for
corresponding members of u. GetPaths uses satisfiabilty checking
to yield only those paths for which the corresponding output from
A, when used as input of B, does not cause the resulting guard
to become unsatisfiable. If the satisfiability check is removed, the
procedure will still be correct in the context of the join algorithm.

The self-join of UptoLastDot (from Figure 4) is illustrated in
Figure 7. Note that the figure shows for example that UptoLastDot
is not idempotent. On the other hand, if we consider the self-join of
the SFT in Figure 5, then we end up with an identical SFT. Property
checking is discussed in more detail below.

Theorem 1. Let A and B be SFTs such that γA = σB . Then
TA◦B = TA ◦ TB . This holds also when the satisfiability check is
omitted.

Proof: First note that the satisfiability check removes transitions
that are infeasible and therefore do not affect the transduction.
We can also ignore states in A ◦ B that are not reachable from
the initial state, and states that do not reach a final state. Suppose
(p1, p2) is reachable from the initial state (q0

A, q
0
B). The definition

of GetPaths follows exactly the construction of the composed
transitions in Definition 2 from (p1, p2), which, together with
Proposition 2, the main while-loop in the join algorithm that

GetPaths(ϕ,u, q, B):

if u = [] yield ([], ϕ, q);

else foreach tr ∈ δB(q)

let ϕ1 = ϕ ∧ Subst(Grd(tr), First(u));

if IsSat(ϕ1)

foreach (y, ψ, p) in GetPaths(ϕ1, Rest(u), Tgt(tr), B)

yield (Subst(Out(tr), First(u)) · y, ψ, p);

Join(A,B):

let q0 = (q0A, q
0
B);Q = {q0}; δ = ∅;

let S be a stack with initial element q0;
while S is nonempty

pop p = (p1, p2) from S;

foreach p1
ϕ/u−→ q1 in δA(p1)

foreach (v, ψ, q2) in GetPaths(ϕ,u, p2, B)

let q = (q1, q2);

add p
ψ/v−→ q to δ;

if q /∈ Q then add q toQ and push q to S;
end of while;
let F = {(q1, q2) ∈ Q | q1 ∈ FA ∧ q2 ∈ FB};
eliminate states inQ \ {q0} that do not reach a state in F ;
return (Q, q0, F, σA, γB , δ);

Figure 6: Join composition algorithm for SFTs.

0

!(c=’.’)/[c] 1(c=’.’)/[]

2

(c=’.’)/[]

3

(c=’.’)/[c]

!(c=’.’)/[]

5

!(c=’.’)/[]

(c=’.’)/[]

!(c=’.’)/[]

(c=’.’)/[]t/[c]

Figure 7: SFT UptoLastDot ◦ UptoLastDot.

considers all possible (p1, p2) that are reachable from the initial
state, and Proposition 1, implies the statement of this theorem.

4.2 Equivalence
We describe an algorithm for deciding equivalence of single-valued
SFTs. Note that all SFTs generated from BEK programs are single-
valued and single-valuedness is trivially preserved by join compo-
sition. Note also that this does, in general, not outrule nondetermin-
istic SFTs, i.e., SFTs whose underlying finite automaton is nonde-
terministic. This is important because, several useful single-valued
trasductions, such as TUptoLastDot, are not expressible as determinis-
tic SFTs.

In the following let A and B be two SFTs such that σ = σA =
σB and γ = γA = γB . A and B are equivalent if TA = TB . Let

Dom(A)
def
= {v | TA(v) 6= ∅}.

Checking equivalence of A and B reduces to two separate tasks:

1. Deciding domain-equivalence: Dom(A) = Dom(B).

2. Deciding partial-equivalence: for all v ∈ Dom(A) ∩ Dom(B),
TA(v) = TB(v).

Note that 1 and 2 are independent and do not imply each other,
while it is easy to see that together they imply equivalence. Check-
ing domain-equivalence is decidable for all SFTs for T , given de-
cidability of PredT (c). This follows from results known for sym-
bolic finite automata or SFAs that generalize finite automata by al-
lowing predicates from PredT (c) as labels.

Next, we develop an algorithm for checking partial-equivalence
of single-valued SFTs. In the following we assume that A
and B are single-valued. The algorithm also depends on that
PredT (c1, c2) is decidable, i.e., that satisfiabilty can be decided
for predicates with up to two uninterpreted constants.

CheckPartialEquivalence(A,B):

let C = Intersect(A,B);
letQ = {q0C 7→ ([], [])};
let S be a stack with initial element q0C ;
while S is nonempty

pop p from S;
let (a,b) = Q(p);

foreach p
ϕ/(u,v)−→ q in δC(p)

let x = a · u; y = b · v;
if q ∈ FC ∧ Len(x) 6= Len(y) FAIL;
letm = min(Len(x),Len(y));
let ψ = ϕ ∧ (

∨
i<m x(i) 6= y(i));

if IsSat(ψ) FAIL;
let x′ = if Len(x) > m then [x(m), . . .] else [];
let y′ = if Len(y) > m then [y(m), . . .] else [];
if x′ = [] ∧ y′ = []

if q /∈ Dom(Q) push q to S and setQ(q) = ([], []);
else ifQ(q) 6= ([], []) FAIL;

else if y′ = []

let c′ be a fresh uninterpreted constant of sort σ;
let ϕ1 = (

∨
i<Len(x′) x

′(i) 6= Subst(x′(i), c′));

let ϕ2 = ϕ ∧ Subst(ϕ, c′) ∧ ϕ1;
if IsSat(ϕ2) FAIL;
let a′ = (x′)M whereM |= ϕ;
if q /∈ Dom(Q) push q to S and setQ(q) = (a′, []);
else ifQ(q) 6= (a′, []) FAIL;

else . . . (symmetrical case for x′ = [])
end of while;
SUCCEED;

Figure 8: Partial-equivalence algorithm for single-valued SFTs.

The algorithm is given in Figure 8. As the first step, the partial-
equivalence checking algorithm uses a procedure called Intersect
that is a slight variation of the intersection algorithm for SFAs [25].
It constructs the intersection of reachable states for conjoined
guards, thus restricting the remainder of the algorithm to the case
of inputs from Dom(A) ∩ Dom(B). Symbolic transitions of the
intersection Intersect(A,B) have the form

(p1, p2)
ϕ1∧ϕ2/(u1,u2)−→ (q1, q2)

where (p1, p2), (q1, q2) ∈ QA × QB , p1
ϕ1/u1−→ A q1, and

p2
ϕ2/u2−→ B q2. The intersection algorithm eliminates transitions

where ϕ1 ∧ ϕ2 is unsatisfiable, it also eliminates all states that are
not reachable from the initial state (q0

A, q
0
B) (by virtue of DFS), and

as a final step, it eliminates all dead states (non-initial states from
which no final state is reachable, a final state in the intersection is
an element of FA × FB).

Next, the algorithm verifies that TA(v) = TB(v) for all inputs
sequences v in the shared domain Dom(A) ∩ Dom(B). This is a
DFS algorithm for symbolic forward analysis of the intersection
C computed in the first step. The algorithm requires the solver for
PredT (c) to be able to provide a model for a satisfiable formula.

In the algorithm, the elements of S are the states still to be
verified. Q is the map from reached states to pending outputs
associated with those states. The proof of the correctness of the
algorithm uses the following lemma.

Lemma 1. If a state q in Intersect(A,B) is reached twice with
different pending outputs then A and B are not partial-equivalent.

Proof: Suppose we can reach a state q in C from the initial
state first time with some input sequence z1, common output o1,
and pending output (a1, b1), and a second time with some input
sequence z2, common output o2, and pending output (a2, b2) such
that (a2, b2) 6= (a1, b1), where, for i = 1, 2, either ai = [] or
bi = []. Let w be any input sequence from q to a final state of C,
w exists because C has no dead states. Since A and B are single-

valued, we know that

TA(z1 · w) = {o1 · a1 · o3}
TB(z1 · w) = {o1 · b1 · o4}
TA(z2 · w) = {o2 · a2 · o3}
TB(z2 · w) = {o2 · b2 · o4}

for some o3 and o4 that are the outputs for w starting from q, in A
and B respectively.

Suppose now that TA(z1 · w) = TB(z1 · w) and TA(z2 · w) =
TB(z2 ·w). Then o1 ·a1 ·o3 = o1 ·b1 ·o4 and o2 ·a2 ·o3 = o2 ·b2 ·o4,
so a1 · o3 = b1 · o4 and a2 · o3 = b2 · o4. We reach contradiction
by case analysis.

• Case a1 = [], b1 = [], a2 6= [], b2 = []. Then o3 = o4 and
a2 · o3 = o4, but a2 6= []. ?
• Case a1 6= [], b1 = [], a2 6= [], b2 = []. Then a1 · o3 = o4 and
a2 · o3 = o4, but a1 6= a2. ?
• Case a1 = [], b1 6= [], a2 6= [], b2 = []. Then o3 = b1 · o4 and
a2 · o3 = o4, and thus o3 = b1 · a2 · o3, but b1 · a2 6= []. ?

The remaining cases are symmetrical.

The following lemma states the correctness of the partial-
equivalence algorithm.

Lemma 2. Let A and B be single-valued SFTs over T with
same input sorts σ and same output sorts γ. If PredT (c:σ, c′:σ)
is decidable, then partial-equivalence of A and B is decidable.

Proof: For each state p, the while-loop verifies locally, that for
any input enabled in p outputs will match up to maximum prefix
of outputs from A and B, where p is associated with prior pending
outputs Q(p) = (a,b) from (A,B), where at least one of a or b
is []. If p is a final state then Q(p) = ([], []). The cases that cause
violation of equivalence are the following, in the order of FAILs:

1. There exist outputs of different length when q is final.

2. Some prefix of outputs differ.

3. Pending outputs differ for q, use Lemma 1.

4. If ϕ2 is satisfiable there exist two different values for the (sym-
bolic) pending output x′ from A, use Lemma 1.

5. When ϕ2 is not satisfiable, any model M |= ϕ gives the same
interpretation a′ for the (symbolic) pending output x′. If there
is already a pending output for q that differs from (a′, []), use
Lemma 1.

If all local verifications hold, the equivalence follows, since the
scope of the input variable is a single symbolic transition. Termi-
nation of the algorithm follows from termination of Intersect ,
termination of satisfiability checks, finiteness of QA × QB , and
that no member of QA ×QB is pushed to S more than once.

The following is the main result regarding decidability of equiva-
lence checking of SFTs.

Theorem 2. Let A and B be single-valued SFTs over T with
same input sorts σ and same output sorts γ. If PredT (c:σ, c′:σ)
is decidable, then equivalence of A and B is decidable.

Proof: For partial-equivalence use Lemma 2. For checking
domain-equivalence of A and B construct corresponding SFAs
DA andDB by removing the outputs from the symbolic transitions
in A and B. Then check emptiness of DA −DB and check empti-
ness of DB −DA using the difference algorithm for SFAs [24].

The following classical result is a corollary of Theorem 2,
by considering a background T with a distinct constant for each
member of the input and output alphabets and no relation symbols
in PredT (c, c′) besides equality.

Schützenberger [23] The equivalence problem of single-valued
finite transducers is decidable.

Note however that [23] does not imply Theorem 2 since finite trans-
ducers cannot have infinitely many transitions, that are needed for
example to represent symbolic transitions where T is linear arith-
metic (the input alphabet is infinite). We believe that Theorem 2
can also be generalized for finite-valued SFTs A, i.e. when TA(v)
is finite for all v, where PredT (c0, . . . , cn) needs to be decidable
for any n.

Regarding algorithmic complexity, there is also a clear advan-
tage in the case of BEK of using SFTs rather than explicit represen-
tations with finite transducers (FTs), due to succinctness of SFTs.
The background theory T is in this case k-bit bit vector arithmetic
(restricted at the moment to comparison relations only) where k de-
pends on the desired character range (e.g., for basic ASCII k = 7,
for extended ASCII k = 8, and for Unicode k = 16). The expan-
sion of a BEK SFT A to [[A]] may increase the size (nr of transi-
tions) by a factor of 2k. Partial-equivalence of single-valued FTs is
solvable O(n2) [12] time. Thus, for an SFT A of size n, using the
partial-equivalence algorithm for [[A]] takes O(2kn2) time. How-
ever, the partial-equivalence algorithm for BEK SFTs is O(n2).

4.3 Other Algorithms
Other algorithms for SFTs can be realized using the above algo-
rithms. One such algorithm, that is used below, is inverse image
computation. A symbolic finite automaton or SFAB is an SFT such
that all symbolic transitions in B have an empty output. Let A be
an SFT and let B be an SFA such that γA = σB . The join compo-
sition A ◦B is an SFA called the inverse image of A under B. The
inverse image of UptoLastDot (from Figure 4) under the SFA for
the regex "^[a-z]\.$" is shown in Figure 9. For SFAs the empty
output is usually omitted from the transition labels in the figures.

 0 1((c!=’.’&(c>=’a’))&(c<=’z’)) 5

c!=’.’

4c=’.’ c=’.’

Figure 9: SFA UptoLastDot ◦ SFA("^[a-z]\.$").

5. Evaluation
Our implementation contains roughly 5, 000 lines of C# code im-
plementing the basic transducer algorithms and Z3 [11] integration,
and 1, 000 lines of F# code for translation from BEK. Our exper-
iments were carried out on a Lenovo ThinkPad W500 laptop with
8GB of RAM and an Intel Core 2 Duo P9600 running at 2.67 GHz,
running Windows 7 x64.

5.1 BEK Expressiveness
Compared to previous tools, such as Kaluza [21] or HAMPI [17],
BEK supports a wider range of programs. Kaluza presently does not
support transducers; special cases such as replace are lowered to a
series of substrings and concatenations using concrete dynamic in-
formation. Furthermore, Kaluza can only answer queries for inputs
up to a bounded length. In contrast, BEK can answer questions for
inputs of unbounded lengths. Compared to HAMPI, we can han-
dle replace for unbounded strings, and we support concatenation
and equality of strings. Length abstractions are also encodable in
BEK using symbolic finite transducers. To our knowledge BEK is
the first engine capable of such analyses.

The symbolic finite transducer representation we introduce is
also much more succinct than traditional transducers. We took 48
BEK programs and counted the number of edges in the result-
ing symbolic finite transducer. These programs included models
of ASP.NET sanitization functions, as well as hand created test
programs. We then estimated the number of edges that would be
present in a non-symbolic encoding. Figure 10 plots the ratio of the
number of edges between encodings and a trend line. The minimum
expansion is 1.4x, while the maximum is 256x.

5.1.1 Deployed Web Sanitizers
AutoEscape and OWASP We converted 14 sanitizers from
Google AutoEscape and the OWASP HTMLEncode sanitizer to

r4cm

Figure 10: Ratio of number of edges in traditional finite transducer to edges in
symbolic finite transducer for 46 BEK programs, including OWASP and Google
AutoEscape sanitizers. The ratios are sorted from least to greatest and a trend line
added.

BEK programs. For each sanitizer, we checked which features of
the original implementation were natively present in the BEK lan-
guage and which were not present. Figure 11 shows the language
features used by these sanitizers. We conclude that few sanitizers
use features that we do not natively support. In all these cases, we
were able to implement work-arounds in the translation to BEK.
Conversion took several days of work by one of the authors.

IE 8 XSS filters. We extracted 21 sanitizers from the binary of
Internet Explorer 8 that are used in the IE Cross-Site Scripting Fil-
ter feature, denoted IEFilter1 to IEFilter18 in Figure 11. For
this study, we analyze the behavior of the IE 8 sanitizers under the
assumption the server performs no sanitization of its own on user
data. Of these 21 sanitizers, we could express 17 as BEK programs.
The remaining 4 sanitizers track a potentially unbounded list of
characters that are either emitted unaltered or escaped, depending
on the result of a regular expression match. BEK does not enable
storing an infinitely long chain of input characters.

We then focused on whether the IE 8 sanitizers are order in-
dependent. Order independence means that the sanitizers have the
same effect no matter in what order they are applied. If the order
does matter, then the choice of order can yield surprising results.
As an example, in rule-based firewalls, a set of rules that are not
order independent may result in a rule never being applied, even
though the administrator of the firewall believes the rule is in use.

Each IE 8 sanitizer defines a specific input set on which it will
transform strings, which we can compute from the BEK model. We
began by checking all 136 pairs of IE 8 sanitizers to determine
whether their input sets were disjoint. Only one pair of sanitizers
showed a non-trivial intersection in their input sets. A non-trivial
intersection signals a potential order dependence, because the two
sanitizers will transform the same strings. For this pair, we used
BEK to check that the two sanitizers output the same language,
when restricted to inputs from their intersection. BEK determined
that the transformation of the two sanitizers on thesel inputs was
exactly the same — i.e., the two sanitizers were equivalent on the
intersection set. We conclude that the IE 8 sanitizers are in fact
order independent.

PHP Builtin Functions. PHP is a widely-used open source
server-side scripting language. Minamide’s seminal work on the
static analysis of dynamic web applications [18] includes finite-
transducer based models for a subset of PHP’s sanitizer functions.
These transducers are hand-crafted in several thousand lines of
OCaml. We conducted an informal review of the PHP source to
confirm that each transducer could be modeled as a BEK program.
We then focused on how often functions are used that can by mod-
eled as BEK programs.

We used statistics from a study by Hooimeijer [13] that mea-
sured the relative frequency, by static count, of 111 distinct PHP
string library functions. The Hooimeijer study was conducted in
December 2009, and covers the top 100 projects on SourceForge.
net, or about 9.6 million lines of PHP code. The study considered
most, but not all, sanitizers provided by Minamide.

Out of the 111 distinct functions considered in the Hooimeijer
study, 27 were modeled as transducers by Minamide and thus
encodable in BEK. In the sampled PHP code, these 27 functions
account for 68, 238 out of 251, 317 uses, or about 27% of all string-

Native Not Native
boolean multiple mult.

Name vars iters regex lookahead arith. functions

a2bb2a.bek 1 7 X 7 7 7
escapeBrackets.bek 1 X 7 7 7 7
escapeMetaAndLink.bek 1 X X 7 7 7
escapeString-allinone.bek 1 7 7 7 7 7
escapeString.bek 1 7 7 7 7 7
escapeStringSimple.bek 1 7 7 7 7 7
getFileExtension.bek 2 7 7 7 7 7
GA HtmlEscape 0 7 7 7 7 7
GA PreEscape 0 7 7 7 7 7
GA SnippetEsc 3 7 7 X 7 7
GA CleanseAttrib 1 7 7 X 7 7
GA CleanseCSS 0 7 7 7 7 7
GA CleanseURLEsc 0 7 7 7 7 7
GA ValidateURL 2 X 7 X X 7
GA XMLEsc 0 7 7 7 7 7
GA JSEsca 0 7 7 X 7 7
GA JSNumber 2 X 7 X 7 7
GA URLQueryEsc 1 X 7 7 X 7
GA JSONESc 0 7 7 7 7 7
GA PrefixLine 0 7 7 7 7 7
OWASP HTMLEncode 0 7 7 X 7 7
IEFilter1.bek 3 7 X 7 7 7
IEFilter2.bek 4 7 X 7 7 7
IEFilter3.bek 5 7 X 7 7 7
IEFilter4.bek 4 7 X 7 7 7
IEFilter5.bek 4 7 X 7 7 7
IEFilter6.bek 5 7 X 7 7 7
IEFilter7.bek 4 7 X 7 7 7
IEFilter8.bek 4 7 X 7 7 7
IEFilter9.bek 5 7 X 7 7 7
IEFilter10.bek 5 7 X 7 7 7
IEFilter11.bek 4 7 X 7 7 7
IEFilter12.bek 4 7 X 7 7 7
IEFilter13.bek 4 7 X 7 7 7
IEFilter14.bek 4 7 X 7 7 7
IEFilter15.bek 1 7 X 7 7 7
IEFilter16.bek 1 7 X 7 7 7
IEFilter17.bek 1 7 X 7 7 7

Figure 11: Expressiveness: different language features used by the original of differ-
ent programs. A cross means that the feature was not used by the program in its initial
implementation. A checkmark means the feature was used by the program. Boolean
variables, multiple iterations over a string, and regular expressions are native con-
structs in BEK. Multiple lookahead, arithmetic, and functions are not native to BEK
and must be emulated during the translation. We also show the number of distinct
Boolean variables used by the BEK implementation.

related call sites. By comparison, traditional regular expression
functions modeled by tools like Hampi [17] and Rex [25] account
for just 29,141 call sites, or about 12%. We note that BEK could be
readily integrated into an automaton-based tool like Rex, however,
and our features are largely complimentary to those of traditional
string constraint solvers.

Language Features. When constructing the BEK language, we
chose to include some language features, such as the ability to
have Boolean variables, but excluded others, such as functions. Fig-
ure 11 breaks down our BEK programs based on “Native” features
of the BEK language, and “Not Native” features which are not cur-
rently in the BEK language. Our theorems in section 4 guarantee
that these features can be integrated into SFTs, however, by en-
hancing the language of constraints used for symbolic labels. In
addition, we found that a maximum lookahead window of eight
characters would suffice for handling all our sanitizers. Finally, we
discovered that the arithmetic on characters was limited to right
shifts and linear arithmetic, which can be expressed in the Z3 solver
we use. We conclude that all current “Not Native” features could be
added to the BEK language with few or no changes to our SFT al-
gorithms for join composition and equivalence checking.

5.2 Idempotence, Reversibility, and Commutativity
We argued in Section 2 that idempotence and commutativity are
key properties for sanitizers. In addition, the property of reversibil-
ity, that from the output of a sanitizer we can unambiguously re-
cover the input, is important as an aid to debugging. Figure 12
reports the number of states in the symbolic finite transducer cre-
ated from each BEK program. For each transducer, we then report
whether it is idempotent and whether it is reversible. The number

Name States Idempotent? Reversible?

a2bb2a.bek 1 7 X
escapeBrackets.bek 1 X 7
escapeMetaAndLink.bek 1 X X
escapeString-allinone.bek 1 7 7
escapeString.bek 1 7 7
escapeStringSimple.bek 1 7 7
getFileExtension.bek 2 7 7
IEFilter1.bek 6 X 7
IEFilter2.bek 9 X 7
IEFilter3.bek 19 X 7
IEFilter4.bek 13 X 7
IEFilter5.bek 13 X 7
IEFilter6.bek 16 X 7
IEFilter7.bek 13 X 7
IEFilter8.bek 12 X 7
IEFilter9.bek 25 X 7
IEFilter10.bek 18 X 7
IEFilter11.bek 11 X 7
IEFilter12.bek 11 X 7
IEFilter13.bek 14 X 7
IEFilter14.bek 14 X 7
IEFilter15.bek 1 X 7
IEFilter16.bek 1 X 7
IEFilter17.bek 1 X 7

Figure 12: For each BEK benchmark programs, we report the number of states in
the corresponding symbolic transducer. We then report whether the transducer is
idempotent, and whether the transducer is reversible.

HTMLEncode1 X X X 7 7 X 7
HTMLEncode2 X X X 7 7 X 7
HTMLEncode3 X X X 7 7 X 7
HTMLEncode4 7 7 7 X 7 7 7
Outsourced1 7 7 7 7 X 7 7
Outsourced2 X X X 7 7 X 7
Outsourced3 7 7 7 7 7 7 X

Figure 13: Commutativity matrix for seven different implementations of
HTMLEncode. The Outsourced implementations were written by freelancers from
a high level English specification.

of states acts as a rough guide to the complexity of the sanitizer.
For example we see IE filter 9 out of 17 is quite complicated, with
25 states.

We investigated commutativity of seven different implementa-
tions of HTMLEncode, a sanitizer commonly used by web applica-
tions. Four implementations were gathered from internal sources.
Three were created for our project specifically by hiring freelance
programmers to create implementations from popular outsourcing
web sites. We provided these programmers with a high level spec-
ification in English that emphasized protection against cross-site
scripting attacks. Figure 13 shows a commutativity matrix for the
HTMLEncode implementations. A X indicates the pair of sanitiz-
ers commute, while a 7 indicates they do not. The matrix con-
tains 12 check marks out of 42 total comparisons of distinct sani-
tizers, or 28.6%.

5.3 Differences Between Multiple Implementations
Multiple implementations of the “same” functionality are com-
monly available from which to choose when writing a web appli-
cation. For example, newer versions of a library may update the
behavior of a piece of code. Different organizations may also write
independent implementations of the same functionality, guided by
performance improvements or by different requirements. Given
these different implementations, the first key question is “do all
these implementations compute the same function?” Then, if there

HTMEncode1 X X X 0 − X 0

HTMEncode2 X X X 0 − X 0

HTMEncode3 X X X 0 − X ′

HTMEncode4 0 0 0 X 0 0 0

Outsourced1 − − − 0 X − 0

Outsourced2 X X X 0 − X 0

Outsourced3 0 0 ′ 0 0 0 X

Figure 14: Equivalence matrix for our implementations of HTMLEncode. A X indi-
cates the implementations are equivalent. For implementations that are not equivalent,
we show an example character that exhibits different behavior in the two implementa-
tions. The symbol 0 refers to the null character.

are differences, the second key question is “how do these imple-
mentations differ?”

As described above, because BEK programs correspond to sin-
gle valued symbolic finite state automata, computing the image of
regular languages under the function defined by a BEK program
is decidable. By taking the image of Σ∗ under two different BEK
programs, we can determine whether they output the same set of
strings. This acts as a sanitizer equivalence check.

We checked equivalence of seven different implementations in
C# (as explained above) of the HTMLEncode sanitization function.
We translated all seven implementations to BEK programs by hand.
First, we discovered that all seven implementations had only one
state when transformed to a symbolic finite transducer. We then
found that all seven are neither reversible nor idempotent. For
example, the ampersand character & is expanded to & by all
seven implementations. This in turn contains an ampersand that
will be re-expanded on future applications of the sanitizer, violating
idempotence.

For each BEK program, we checked whether it was equivalent
to the other HTMLEncode implementations. Figure 14 shows the
results. For cases where the two implementations are not equiv-
alent, BEK derived a counterexample string that is treated dif-
ferently by the two implementations. For example, we discov-
ered that HTMLEncodeFreelance0 escapes the − character, while
HTMLEncodeFreelance1 does not. We also found that one of the
HTMLEncode implementations does not encode the single quote
character. Because the single quote character can close HTML con-
texts, failure to encode it could cause unexpected behavior for a
web developer who uses this implementation.

This case study shows the benefit of automatic analysis of string
manipulating functions to check equivalence. Without BEK, obtain-
ing this information using manual inspection would be difficult, er-
ror prone, and time consuming. With BEK, we spent roughly 3 days
total translating from C# to BEK programs. Then BEK was able to
compute the contents of Figure 14 in less than one minute, includ-
ing all equivalence and containment checks.

5.4 Checking Filters Against The Cheat Sheet
The Cross-Site Scripting Cheat Sheet (“XSS Cheat Sheet”) is a
regularly updated set of strings that trigger JavaScript execution on
commonly used web browsers. These strings are specially crafted
to cause popular web browsers to execute JavaScript, while evading
common sanitization functions. Once we have translated a sanitizer
to a program in BEK, because BEK uses symbolic finite state
automata, we can take a “target” string and determine whether there
exists a string that when fed to the sanitizer results in the target. In
other words, we can check whether a string on the Cheat Sheet has
a pre-image under the function defined by a BEK program.

HTML Attribute
Implementation context context

HTMLEncode1 100% 93.5%
HTMLEncode2 100% 93.5%
HTMLEncode3 100% 93.5%
HTMLEncode4 100% 100%
Outsourced1 100% 93.5%
Outsourced2 100% 93.5%
Outsourced3 100% 93.5%

Figure 15: Percentage of XSS Cheat
Sheet strings, in both HTML and At-
tribute contexts, that are ruled out by
each implementation of HTMLEncode.

We sampled 28 strings
from the Cheat Sheet. The
Cheat Sheet shows snippets
of HTML, but in practice
a sanitizer might be run
only on a substring of the
snippet. We focused on the
case where a sanitizer is
run on the HTML Attribute
field, extracting sub-strings
from the Cheat Sheet ex-
amples that correspond to
the attribute parsing context.
While HTMLEncode should
not be used for sanitizing data that will become part of a URL at-
tribute, in practice programmers may accidentally use HTMLEncode
in this “incorrect” context. We also added some strings specifically
to check the handling of HTML attribute parsing by our sanitiz-
ers. As a result, we obtained two sets of attack strings: HTML and
Attribute.

For each of our implementations, for all strings in each set, we
then asked BEK whether pre-images of that string exist. Figure 15
shows what percentage of strings have no pre-image under each

Figure 16: Self-equivalence experiment.

implementation. All seven implementations correctly escape an-
gle brackets, so no string in the HTML set has a pre-image un-
der any of the sanitizers. In the case of the Attribute strings, how-
ever, we found that some of the implementations do not escape the
string“&#”, potentially yielding an attack. Only one of our imple-
mentations of HTMLEncode made it impossible for all of the strings
in the Attribute set from appearing in its output. Each set of strings
took between 36 and 39 seconds for BEK to check the entire set of
strings against a sanitizer.

5.5 Scalability of Equivalence Checking
Our theoretical analysis suggests that the speed of queries to BEK
should scale quadratically in the number of states of the symbolic
finite transducer. All sanitizers we have found in “the wild,” how-
ever, have a small number of states. While this makes answering
queries about the sanitizers fast, it does not shed light on the empir-
ical performance of BEK as the number of states increases. To ad-
dress this, we performed two experiments with synthetically gener-
ated symbolic finite transducers. These transducers were specially
created to exhibit some of the structure observed in real sanitiz-
ers, yet have many more states than observed in practical sanitizer
implementations.

Self-equivalence experiment. We generated symbolic finite
transducers A from randomly generated BEK programs having
structure similar to typical sanitizers. The time to check equiva-
lence of A with itself is shown in Figure 16 where the size is the
number of states plus the number of transitions in A. Although the
worst case complexity is quadratic, the actual observed complexity,
for a sample size of 1,000, is linear.

Commutativity experiment. We generated symbolic finite trans-
ducers from randomly generated BEK programs having structure
similar to typical santizers. For each symbolic finite transducer A,
we checked commutativity with a small BEK program UpToLast-
Dot that returns a string up to the last dot character. The time to
determine that A ◦ UpToLastDot and UpToLastDot ◦ A are equiv-
alent is shown in Figure 17 where the size is the total number of
states plus the number of transitions in A. The time to check non-
equivalence was in most cases only a few milliseconds, thus all
experiments exclude the data where the result is not equivalent,
and only include cases where the result is equivalent. Although the
worst case complexity is quadratic, the actual observed complexity,
over a sample size of 1,000 individual cases, was near-linear.

5.6 From BEK to Other Languages
In addition to analysis highlighted in our previous case studies, we
have built compilers from BEK programs to commonly used lan-
guages. This allows a developer to write a sanitizer or other string
manipulation function in BEK, enjoying the benefits of its analysis
and visualization. When the time comes for deployment, the devel-
oper can compile to the language of her choice for inclusion into
an application.

Figure 18 shows a small example of a BEK program and the re-
sult of its JavaScript compilation. As part of the compilation, we
have taken advantage of our knowledge of properties of JavaScript
to improve the speed of the compiled code. For example, we push

Figure 17: Commutativity experiment.

program test0(t); function test0(t)
{

string s; var s =
function ($){
var result = new Array();

s := iter(c in t) for(i=0;i<$.length; i++){
{b := false;} { var c =$[i];

case ((c == ’a’)): if ((c == String.fromCharCode(97)))
b := !(b) && b; {
b := b || b; b := (~(b) && b);
b := !(b); b := (b || b);
yield (c); b := ~(b);

result.push(c);
}

case (true) : if (tt)
yield (’$’); {

result.push(String.fromCharCode(36));
}

};
return result.join(’’);

}; }(str);
return s;

}

Figure 18: A small example BEK program (left) and its compiled version in JavaScript
(right). Note the use of result.push instead of explicit array assignment.

characters into arrays instead of creating new string objects. The
result is standard JavaScript code that can be easily included in any
web application. By adding additional compilers for common lan-
guages, such as C#, we can give a developer multiple implementa-
tions of a sanitizer that are guaranteed to be equivalent for use in
different contexts.

6. Related Work
Saner combines dynamic and static analysis to validate sanitization
functions in web applications [7]. Saner creates finite state trans-
ducers for an over-approximation of the strings accepted by the
sanitizer using static analysis of existing PHP code. In contrast,
our work focuses on a simple language that is expressive enough
to capture existing sanitizers or write new ones by hand, but then
compile to symbolic finite state transducers that precisely capture
the sanitization function. Saner also treats the issue of inputs that
may be tainted by an adversary, which is not in scope for our work.
Our work also focuses on efficient ways to compose sanitizers and
combine the theory of finite state transducers with SMT solvers,
which is not treated by Saner.

Minamide constructs a string analyzer for PHP code, then uses
this string analyzer to obtain context free grammars that are over-
approximations of the HTML output by a server[18]. He shows
how these grammars can be used to find pages with invalid HTML.
Our work treats issues of composition and state explosion for finite
state transducers by leveraging recent progress in SMT solvers,
which aids us in reasoning precisely about the transducers created
by transformation of BEK programs.

Wasserman and Su also perform static analysis of PHP code to
construct a grammar capturing an over-approximation of string val-
ues. Their application is to SQL injection attacks, while our frame-
work allows us to ask questions about any sanitizer [26]. Follow-
on work combines this work with dynamic test input generation to
find attacks on full PHP web applications [27]. Dynamic analysis of

PHP code, using a combination of symbolic and concrete execution
techniques, is implemented in the Apollo tool [6]. The work in [28]
describes a layered static analysis algorithm for detecting security
vulnerabilities in PHP code that is also enable to handle some dy-
namic features. In contrast, our focus is specifically on sanitizers
instead of on full applications; we emphasize precision of the anal-
ysis over scaling to large amounts of code.

Christensen et al.’s Java String Analyzer is a static analysis
package for deriving finite automata that characterize an over-
approximation of possible values for string variables in Java [9].
The focus of their work is on analyzing legacy Java code and on
speed of analysis. In contrast, we focus on precision of the analysis
and on constructing a specific language to capture sanitizers, as
well as on the integration with SMT solvers.

Our work is complementary to previous efforts in extending
SMT solvers to understand the theory of strings. HAMPI [17] and
Kaluza [21] extend the STP solver to handle equations over strings
and equations with multiple variables. Rex extends the Z3 solver
to handle regular expression constraints [25], while Hooimeijer et
al.show how to solve subset constraints on regular languages [14].
We in contrast show how to combine any of these solvers with finite
automata whose edges can take symbolic values in the theories
understood by the solver.

7. Conclusions
Developers can use BEK to write programs that are capable of
handling common web sanitization tasks, then translate them au-
tomatically to symbolic finite transducers. This new symbolic fi-
nite transducer representation makes it possible to quickly answer
queries about the sanitization function. Furthermore, our approach
allows the class of programs to be extended by extending the theory
used to annotate edges of the symbolic transducer. Our algorithms
make it possible to check security properties of sanitization func-
tions quickly, aiding developers of web applications. Finally, after
using BEK to develop a sanitizer, the developer can compile to an
existing language. BEK provides an all around solution for analysis
and development of sanitization functions.

References

[1] About Safari 4.1 for Tiger. http://support.apple.com/kb/DL1045.
[2] Internet Explorer 8: Features. http://www.microsoft.com/windows/internet-

explorer/features/safer.aspx.
[3] NoXSS Mozilla Firefox Extension. http://www.noxss.org/.
[4] OWASP: ESAPI project page. http://code.google.com/p/owasp-esapi-java/.
[5] XSS (Cross Site Scripting) Cheat Sheet. http://ha.ckers.org/xss.html.
[6] S. Artzi, A. Kieżun, J. Dolby, F. Tip, D. Dig, A. Paradkar, and M. D. Ernst.

Finding bugs in web applications using dynamic test generation and explicit-state
model checking. Transactions on Software Engineering, 99:474–494, 2010.

[7] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic, E. Kirda, C. Kruegel, and
G. Vigna. Saner: Composing static and dynamic analysis to validate sanitization
in web applications. In SP, 2008.

[8] N. Bjørner, N. Tillmann, and A. Voronkov. Path feasibility analysis for string-
manipulating programs. In TACAS, 2009.

[9] A. S. Christensen, A. Møller, and M. I. Schwartzbach. Precise Analysis of String
Expressions. In SAS, 2003.

[10] L. de Moura and N. Bjørner. Efficient E-matching for SMT solvers. In CADE-21,
2007.

[11] L. de Moura and N. Bjørner. Z3: An Efficient SMT Solver. In TACAS’08, LNCS.
Springer, 2008.

[12] A. J. Demers, C. Keleman, and B. Reusch. On some decidable properties of
finite state translations. Acta Informatica, 17:349–364, 1982.

[13] P. Hooimeijer. Decision procedures for string constraints. Ph.D. Dissertation
Proposal, University of Virginia, April 2010.

[14] P. Hooimeijer and W. Weimer. A decision procedure for subset constraints
over regular languages. In PLDI ’09: Proceedings of the 2009 ACM SIGPLAN
conference on Programming language design and implementation, pages 188–
198, New York, NY, USA, 2009. ACM.

[15] P. Hooimeijer and W. Weimer. Solving string constraints lazily. In ASE, 2010.
[16] O. Ibarra. The unsolvability of the equivalence problem for Efree NGSM’s with

unary input (output) alphabet and applications. SIAM Journal on Computing,
4:524–532, 1978.

[17] A. Kiezun, V. Ganesh, P. J. Guo, P. Hooimeijer, and M. D. Ernst. HAMPI: a
solver for string constraints. In ISSTA, 2009.

[18] Y. Minamide. Static approximation of dynamically generated web pages. In
WWW ’05: Proceedings of the 14th International Conference on the World Wide
Web, pages 432–441, 2005.

[19] G. Rozenberg and A. Salomaa, editors. Handbook of Formal Languages,
volume 1. Springer, 1997.

[20] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and D. Song. A
symbolic execution framework for javascript. Technical Report UCB/EECS-
2010-26, EECS Department, University of California, Berkeley, Mar 2010.

[21] P. Saxena, D. Akhawe, S. Hanna, S. McCamant, F. Mao, and D. Song. A
symbolic execution framework for javascript. In IEEE Security and Privacy,
2010.

[22] P. Saxena, D. Molnar, and B. Livshits. Scriptgard: Preventing script injection
attacks in legacy web applications with automatic sanitization. Technical Report
MSR-TR-2010-128, Microsoft Research, August 2010.

[23] M. P. Schützenberger. Sur les relations rationnelles. In GI Conference on
Automata Theory and Formal Languages, volume 33 of LNCS, pages 209–213,
1975.

[24] M. Veanes, N. Bjørner, and L. de Moura. Symbolic automata constraint solving.
In C. Fermüller and A. Voronkov, editors, LPAR-17, volume 6397 of LNCS, pages
640–654. Springer, 2010.

[25] M. Veanes, P. de Halleux, and N. Tillmann. Rex: Symbolic Regular Expression
Explorer. In ICST’10. IEEE, 2010.

[26] G. Wassermann and Z. Su. Sound and precise analysis of web applications for
injection vulnerabilities. In PLDI, 2007.

[27] G. Wassermann, D. Yu, A. Chander, D. Dhurjati, H. Inamura, and Z. Su. Dynamic
test input generation for web applications. In ISSTA, 2008.

[28] Y. Xie and A. Aiken. Static detection of security vulnerabilities in scripting
languages. In Proceedings of the 15th conference on USENIX Security Symposium
- Volume 15, pages 179–192, Berkeley, CA, USA, 2006. USENIX Association.

